Pythagorean Theorem

The Pythagorean Theorem describes the relationship between the lengths of the legs and the hypotenuse of a right triangle.

$$
a^{2}+b^{2}=c^{2}
$$

Pythagorean Theorem

The relationship $a^{2}+b^{2}=c^{2}$ can be shown visually.
a^{2} is the area of a square with side length a

Pythagorean Theorem

Given the length of legs a and b, the length of the hypotenuse can be found using the formula $a^{2}+b^{2}=c^{2}$.

Pythagorean Theorem

Given the length of one leg and the length of the hypotenuse, the length of the other leg can be found using the formula $a^{2}=c^{2}-b^{2}$.

$\underset{\underset{x}{+}-\underset{\sim}{-}}{ }$ Math-Aids.Com

Pythagorean Theorem

The Pythagorean Theorem will work for any right triangle.

Pythagorean Theorem

The Distance Formula is a variant of the Pythagorean Theorem.
You may calculate the distance between two points using the the Distance Formula.

The Distance Formula : Given the two points P1 $\left(x_{1}, y_{1}\right)$ and $P 2\left(x_{2}, y_{2}\right)$, the distance between these points is given by the formula:

$$
\text { distance }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

$$
\begin{aligned}
& P_{1}=\left(x_{1}, y_{1}\right) \quad P_{2}=\left(x_{2}, y_{2}\right) \\
& P_{1}=(2,8) \quad P_{2}=(7,3) \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{(7-2)^{2}+(3-8)^{2}} \\
& d=\sqrt{(5)^{2}+(-5)^{2}} \\
& d=\sqrt{25+25} \\
& d=\sqrt{50} \\
& d=7.0711
\end{aligned}
$$

